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Today’s Session

While strong predictive modeling is regarded as 

one of the key best practices in new student 

recruitment, the cost to develop such a model is 

high. In this session, we’ll discuss how campuses 

(both large and small, public and private) can 

effectively use on-campus expertise to develop 

robust predictive models that are statistically 

sound, practically useful, and virtually free.
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Background Information
• Kenton

– Roughly 19 years in Admission

• Canadian private

• Midwest public

• Iowa private

– MBA research focused on predictive modeling

• Mike

– Formerly computer science faculty

– Director of Institutional Research

What is Predictive Modeling?

• Using data and statistical methods to predict 
the enrollment probability that a potential 
student will enroll at your school

– College-held data about enrollment behaviors 
(source codes, etc.)

– Other meaningful geodemographic variables

• Built on the assumption that 

– “Birds of a feather flock together”

– Next year will be like last year
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Everyone’s Using Predictive Modeling

…at least that’s how it seems

• A brief and unofficial history

– Mid-late 1990s

• Birth of predictive modelling in recruitment

– Early 2000s

• Mainstreaming

– 2010+

• Understood best practice & commonplace use

Available Options

• Outsource
– Buy the service of a vendor to create and deliver 

model

– Collect the data necessary for a model

– Let vendor develop, create and maintain the model

– Pull results into recruitment system

– Pay vendor ~$16K+ annually

• Insource
– Collect the data necessary

– Find an expert to help

– Do the work yourself
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Strengths & Weaknesses
• Outsource:

– Strengths
• Ease

• Timing

• Align modeling techniques with admissions realities

• Vendor does 100’s of them…higher confidence in outcome?

– Weaknesses
• Cost

• Lack of inside-track familiarity with institutional nuances and 
business practices

• Challenges with CRM integration

• Data integrity work often is duty of client

Strengths & Weaknesses

• Insource

– Strengths

• Inexpensive…virtually free

• Familiarity with data makes for enhanced reliability and/or 

relevance for recruitment

• Flexibility to adapt model without upcharge

– Weaknesses

• Time

• Trust in the model is self-determined, not vetted by vendor

• Reliance on (likely) one individual, vs. an organization – for 

future updates
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Big Data @ Small College?

• It is possible for any college

– Large & small

Necessary Environmental Conditions 

for Success

• Clean and old data is a must

– Two years+ minimally

– Behavioral data (source codes)
• One or many sources

• Date-sensitive source codes, etc.

– Funnel history

– Culture of data capture

• Technical baseline

– Turn potentially meaningful data into 1’s and 0’s

– Willingness to provide these data repeatedly and much 
more data than will be used (for research purposes)
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Necessary Environmental Conditions 

(continued)

• Statistical Acumen
– Economist, Mathematician, Computer or Social 

Scientist who is familiar with research methods 
regarding model specification

– “Normal enough” to interact with practical and 
academic realities

• Practitioner Oversight
– The model needs to pass the sniff test for what is 

practically useful

– Consideration for recruitment process and timelines

– Avoidance of pitfalls that create over-specification

What We Did @ 4 yr public

• At University of North Dakota (~14,000)
– Dr. Cullen Goenner (Economist) & Kenton Pauls 

(Director of Enrollment Services)

– Identified potential predictors for Inq:Enr model
• Geo/demo, ACT, admissions/behavioral, etc.

– Very statistically sound

– Model formula provided directly to in-house 
programmers of CRM

– Entire dataset scored ever night

– Special attention given to “top 20%” of the model 
scores 
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http://goo.gl/5NHhcF

What We Did @ 4 yr private

• At Northwestern College, IA (~1,200)

– Mike Wallinga (Director of IR, CS/Math background)

– Very familiar with institutional data

– Savvy in both enrollment mgt & academic matters

– Fixed data capture mechanisms (~2 yrs)

– Developed model

– Mike scores the model weekly

– Full integration into CRM with special emphasis on top 

third
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Developed Two Models

• Inquiry – to – Application

– Only included variables that we know prior to a 

student applying

• Application – to – Enrollment

– All student variables are fair game

• The inquiry-to-application model proved to be 

more useful and became our focus

A Few Nuts and Bolts

• Our models were developed in R 

(http://www.r-project.org/), but any statistics 

software package should do just fine

• Both models are binomial logistic models 

using the logit link function

• Trained model with data from 2011, 2012, and 

2013 prospective students

• Optimized with the “step” function in R
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Data Preparation

• Collected basic data about students from our 

administrative database

• Supplemented with zip code-level 

demographics

– Taken from Microsoft MapPoint, but could get it 

from US Census Bureau and other sources, too

Included Variables
• Days since initial inquiry status *

• First contact method

• Gender

• Home state (“Common states”) 

*

• Campus visit

• Population density

• Average household income

• Average household expenditure 

on education

• Average household expenditure 

on reading *

• Median housing value

• % of adults with some 
college *

• % of adults with bachelor’s

• % of adults with grad 
degree

• % of population, white 
ethnicity

• % of population, age 15-24

• Average annual 
temperature difference 
between home zip code and 
Orange City
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Model Output

• Each student was assigned a number between 

0 and 1 representing the probability of a 

positive outcome (student applies)

• According to the model, the “best” students 

had a 36% chance of applying

• Most of the “good” prospects were between 

8% and 12%

Converting Probabilities to Ranks

• What’s the difference between someone with 

a 13% chance of applying and an 18% chance?

– It turns out, very little!

• We decided not to focus on the raw 

probabilities

• Instead, we grouped the students into deciles, 

and focused on their decile ranking
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Decile Cutoff Points
Ranking Probability Cutoff Number of Students

1 0.115 5530

2 0.075 5529

3 0.051 5529

4 0.035 5537

5 0.025 5522

6 0.015 5536

7 0.010 5522

8 0.008 5529

9 0.006 5529

10 0.001 5530

Overriding Scores

• We don’t know much about these students, 

but for some, we know more than others

– Children/siblings of an alum or current student

– Already visited campus

• In these cases, we forced the model to score 

these students in the top decile

• Institutional strategy sometimes trumps 

statistical soundness!
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Integration into CMS

• We stored the rankings in our administrative 

database and surfaced them in our CMS

• The decile rankings were easier for admissions 

counselors and student callers to use

• Counselors and callers could search and filter 

according to ranks

– Anecdotally resulted in better calls and increased 

satisfaction

Examining the Model’s Results
Model 

Ranking

Prospective 

Students

Number of 

Applications

% of Students 

Applying

% of All Apps

1 1685 724 43% 57%

2 1794 145 8% 11%

3 1972 120 6% 9%

4 4145 103 3% 8%

5 1540 57 4% 4%

6 759 39 5% 3%

7 603 15 3% 1%

8 558 6 1% < 1%

9 1216 8 < 1% < 1%

10 1625 11 < 1% 1%
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Evaluating the Model’s Results

• The “bubble” at ranking 4 is undesirable

– Model may be overfitting to the training data

• Model’s goodness-of-fit metrics aren’t great

• But, the results weren’t bad:
Ranking % of Students in the 

Applicant Pool

% of Applications

1 only 11% 43%

1 or 2 22% 68%

1 or 2 or 3 34% 77%

Future Work

• Improve the model’s goodness-of-fit and the 
ranking distribution of production data

• Experiment with different data transformations

• Experiment with different modeling techniques

– Random forests? Generalized additive models? 
Ensemble approaches?

• Enhance app:enr model

• Integrate ACT survey-level data

– Should improve robustness and data richness for the 
inq:app model
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How Were These Results Useful?

• Recruitment

– Phone call targeting

– Mailing focus

– Event invitations

– Application promotion late in cycle

– Codifies continuity of logic even when staff 

transition

• Financial aid

– Will be used to interpret financial aid opportunities

“Essentially, all models are wrong, 

but some are useful”

–George E. P. Box
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Questions & 

Discussion?

Our contact info

kenton.pauls@nwciowa.edu

mwalling@nwciowa.edu


